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A description of equilibrium quantities, including the excess functions of mixing, was possi- 
ble using a small number of parameters essentially obtainable from the properties of pure 
components. For this purpose, molecules were divided into segments, segments related to 
graph points, interesting walks on graphs counted, and thermodynamic properties expressed 
in termsof interactions of pairs of walks. For such an approach, the association of alcohols is 
irrelevant and no reference to association schemes was made. “Odd” behaviour of the lower 
members of the homologous series of n-alcohols was discussed in terms of walks on corre- 
sponding graphs. 

1. INTRODUCTION 

At the present stage of liquid state theory, it appears that, in many cases, further 
progress is limited by our still insufficient understanding of simpler systems- 
consisting of spherical molecules or of mixtures of liquids belonging to the same 
homologous series. 

We have chosen to study the thermodynamic properties of n-alcohols and 
their mixtures for a number of reasons. First, in the context mentioned above, 
the study of such systems should precede the investigation of more complicated 

+To whom correspondence should be addressed at Dkpartement de Chimie, Universit6 de 
Montrbal, Montreal 101, P.Q., Canada. 
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84 W. BROWSTOW A N D  B. C.-Y. LU 

ones, in this case those containing alcohols together with other components. The 
objects of our study, however, are not too simple; in view of the association of 
alcohols, current interpretations of systems involving them’ are in fact generally 
based on the notion of association. The series includes a relatively large number 
of members in the liquid state at room temperature, where most measurements 
have been made. Experimental data available are fairly extensive, including de- 
terminations by Diaz PeRa and Fernandez Martin’ and careful measurements by 
Benson and his  colleague^.^ 

Associated solutions are usually described by postulating that certain kinds of 
multimers are present, and by assuming values for association reaction constants, 
heats of association, etc., so as to reproduce the experimentally measured quan- 
tities. In the study of excess thermodynamic properties it is thus necessary to 
have a number of adjustable parameters accounting for the association. We shall 
endeavour to describe the properties of alcohols and their mixtures without the 
use of association parameters, in fact without any reference to association 
schemes. This might be possible as, whatever the association behaviour of, say, 
hexanol may be, it cannot be widely different from that of heptanol. 

One can also expect, as no other components but alcohols are present, that 
intermolecular forces and the structure of mixtures should be essentially the 
same as those found in pure liquids. If this is the case, neither “mixed” para- 
meters characterizing new phenomena occuring in mixtures which supposedly 
have not occurred in pure components, nor any combining rules should be 
necessary. Thus, our second objective is t o  describe mixtures in terms of the 
properties of pure components alone. 

In a number of cases, the study of a property for the series of alcohols reveals 
“odd” behaviour in the lower members of the series, methanol and ethanol in 
particular, when drawing, e.g., the curve of a given property as a function of the 
chain length. Our further objective will be, therefore, to discuss this particular 
phenomenon. 

2. BASIC RELATIONS 

As the main variable in the series of n-alcohols is the length of the molecule, it is 
only natural to divide molecules into segments. We assume that there are three 
kinds of segments: OH groups referred to by subscript “o”, middle carbon, i.e., 
CH2 groups, referred to by subscript “m”, and end carbon, i.e., CH3 groups, 
represented by subscript “e”. 

We also intend to study the behaviour of longer parts of molecules, i.e., the 
effects of neighbouring segments upon the properties and interactions of a given 
segment. To  do this, we assume that each segment, as defined above, corre- 
sponds to a point on a graph. An approach based on this correspondence has 
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SINGLE AND B I N A R Y  N- ALCOHOLS 85 

been proposed b e f ~ r e . ~  For the present work, the following notions are of 
importance. A graph itself may be simply defined as a set of points, plus a set of 
lines connecting them. An alternating sequence of points and lines, beginning 
and ending with points, is called a walk. In view of the last definition, a segment 
of a molecule, i.e., a point on the respective graph, represents a walk of length 
Q = 0. A pair of neighbouring segments considered as a single entity represents a 
walk of length one, a triplet of segments is a walk with Q = 2, etc. The total 
number of walks of length Q in a given graph may be obtained from the adjacen- 
cy matrix of the graph.’ This number might include, particularly for long walks, 
some walks which for physical reasons are not interesting or just redundant; 
already for Q = 2, we have, for example, a walk aba beginning and ending at  the 
same point. What is needed, therefore, are number rl, of equivalent classes of 
interesting walks6 rather than total numbers of walks. As formulas for rl, with 
!2 < 5 have been derived in the same paper,6 we have used them directly in the 
present work. 

To calculate equilibrium properties of a system, we consider walks of a 
specified length as the units interacting among themselves. We make the usual 
assumption of confining ourselves to binary interactions; that is, interactions of 
higher order are “hidden” in the binary terms. A simple algebraic argument 
shows4 that contributions from single units are completely contained in the 
binary terms. Thus 

F = 0.5 C, 2,,1 X,X,~ F,,, 

where F denotes one of a number of certain thermodynamic quantities to be 
specified below per mole of units, xy is a mole fraction and Fyy,,  is a character- 
istic parameter. 

1 ,  of interest may be expressed in terms of pair interaction 
energies u(R) and p a r  radial distribution functions g(R), where R denotes the 
distance between a pair of interacting units. According to the standard relation 
for the configurational energy 

The parameters F 
yu 

where V is the volume of the system. Therefore 

~ y y ~  (R) 477 R2 dR 

V (3) U,,,t= 0.5 N2 U~Y’ 

with N denoting the total number of units, and the average interaction energy 
G, of a unit of type y with a unit of type y’ given by 
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86 W. BROWSTOW AND B. C.-Y. LU 

The term V'Jgyyp(R) R2 dR in Eq. (3) is retained to emphasize the fact, that 
beyond some distance R;y, the contribution of a pair of units to the total value 
of 6 becomes negligible; assuming this term to be unity would mean assuming 
that a pair of units in the liquid state interacts no matter how large their 
separation. 

To consider volume, standard "pressure equation", i.e., P = P[u(R), g(R)] - cf. 
e.g. ' .- is necessary. If we confine our considerations to low pressures, say, 
p < 1 J ~ r n - ~ ,  pressure becomes a small difference of two larger quantities, and 
we may neglect it altogether. The standard pressure equation gives 

where k is the Bolzmann constant and T is the thermodynamic temperature. 
Thus, to make Eq. (1) applicable for F= V we set 

vyyt =- * Jd2iyr) - R3 gyy. (R) dR 
3 k T  

It is now possible to deal with the isobaric expansivity a = V-' (aV/aT),, 
isothermal compressibility K T  = -V-' (aV/aP),, and adiabatic compressibility 
K~ =-V-' (aV/aP),. It is evident from the definitions that Eq. (1)  is also applicable 
for F = a V ,  KTV and K ~ V ,  while F # a, K T  nor K,. 

To conclude this section, let us comment briefly on the case of ideal mix- 
tures, i.e., those obeying Raoult's law. We find, that the formalism such as 
proposed in (4 ) and discussed above gives for this specific case 

= 0.5 [G s g a ,  (R) R2 dR + sgbb (R) R2 dR 1 (7) 

where a and b denote components of the binary mixture. 

3. WALKS ON MOLECULES 

Let us denote the number of carbon atoms in a molecule of n-alcohol by r. Thus, 
according to  the definitions accepted above, the number of segments or of walks 
of length zero in a molecule is ro = r + 1.  The concentrations of the units of the 
three kinds are respectively x, =(r-l)/(rtl)and x, = xo =.(r+lr '  ; this applies 
to a single molecule or to a pure substance. In a mixture of molecules of 
different lengths, one has t o  average r as Cixjri, where the index i refers to the 
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SINGLE AND BINARY N- ALCOHOLS 87 

components. In the present case, Eq. ( l) ,  (now per mole of molecules instead of 
per mole of segments), takes the form: 

(r-l)2 1 r- 1 
2(r+l) r t  1 r t  1 
(r-l)2 1 r- 1 
2(r+l) r t l  r t  1 

I ? = - - - - -  F,, + - (0.5 Fee + 0.5 Foo + Fee) + - (Fme +Fmo) 

=- F, t - F, t - F, 

where we have taken advantage of the fact that certain coefficients are the same 
and reduced the number of parameters from 6 to 3. The new symbols, FI , F2 
and F3 are introduced with obvious meaning. 

Let us turn now to Q = 1. From the segment CH2 we now obtain in a natural 
way the walk CH2*CH2, from CH3 the walk CH3*CH2 and from OH the walk 
L'H, -OH. For each molecule, the equation for rl derived in 
type of unit appears, however, in the methanol molecule, namely the molecule 
itself. Including the latter would increase the total number of characteristic 
parameters from 6 to 10 and would render difficult the formulating of an 
expression in terms of r, corresponding to Eq. (8). In fact, a separate equation 
for mixtures containing methanol would be necessary. We therefore exclude 
methanol and methanol-containing mixtures from our treatment for P = 1. Now, 

gives = r. A new ' 

(r-2)2 1 r -2 =- F, + - F2 t - F, 
2r r r (9) 

where again we have reduced the number of characteristic parameters necessary 
in actual calculations from 6 to 3. 

Finally, let us turn to Q = 2 .  According to the respective relation in 6 ,  we have 
r, =r-1 For reasons analogous to these discussed for !2= 1, we now exclude 
both methanol and ethanol. If thus is done, we are able to write 

(r-3), 1 r -3 =- F, t - F, t - F, 
2(r-1) r-1 r-1 

To test the validity of our approach, three orders of approximation seem suffi- 
cient. We therefore do not consider Q > 2 but turn to computations of numerical 
values of thermodynamic properties. 

4. CALCULATIONS AND RESULTS 

Volumes: Eqs. (8-10) were applied in turn to the molar volumes of pure com- 
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88 W. BROWSTOW A N D  B. C.-Y. LU 

TABLE 1 

Molar volumes at 298.15K 

V, cm3 m01;' 

r Experimental P = O  P =  1 P = 2  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

40.73a9b 

58.68a.b 

75.16b 
75.14a 

91.96a.b 

108.6 3a 

125.26b 
125.23a 

14 1.96a 

158.42b 
15 8.39a 

174.92a 

191.51a 
191.43b 

41.87 

58.69 

75.38 

92.02 

108.63 

125.22 

141.81 

158.39 

174.97 

191.54 

- 

58.68 

75.39 

92.02 

108.63 

125.22 

141.81 

158.39 

174.97 

191.54 

- 

75.35 

92.02 

108.63 

125.22 

141.81 

158.39 

174.95 

191.52 

a Selected values of properties of chemical compounds, Thermodynamics research center 

b Ref. 3 

data project, Texas A and M University, College Station, Texas. 

ponents at 298.15K, as it is at this temperature that excess volumes of binary 
mixtures have been measured by Benson et al. 3 .  The results, along with reliable 
experimental data, are given in Table 1. The parameters obtained by an approxi- 
mate computer procedure (least squares fit of an overdetermined system of 
equations linear in three unknowns), and used in these calculations are listed in 
Table 2. 

The values in Table 1 show that, except for methanol, a satisfactory repre- 
sentation of experimental data is possible using a relation corresponding to the 

TABLE 2 

Pair interaction volumes at 298.15K (in cm3, mol-l) 

0 33.1.15 83.745 75.177 
1 33.130 117.368 92.234 
2 33.118 150.694 108.798 
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SINGLE AND BINARY N- ALCOHOLS 89 

general form of Eq. (1). The discrepancy for methanol is expected, from the 
discussion in the preceding section. As we habitually think of the volume of a 
system as resulting from the volumes of its constituent parts, it must be remem- 
bered that single or no-external-interaction terms now make their contributions 
through the binary terms; each of the binary terms contains single terms plus the 
binary term proper. 

It is worth noting, that the parameter V1 or Vmm represents interactions 
between methylene groups, the same as occur in n-alkanes. Indeed, comparison 
of parameters in Table 2 with the Vmm's obtained for alkanes, and their mix- 
t u r e ~ ~  shows, that the respective values are fairly close to each other. Small 
differences may be explained by approximations in the numerical procedures 
and also by the simple fact, that the data for alkanes refer to a temperature 5K 
lower. 

A stringent test of any approach to the liquid state is its ability to predict 
excess functions of mixing. Using the parameters from Table 2 ,  i.e., exactly the 

TABLE 3 

Excess volumes for equimolar mixtures at 298.15K 

vE, cm3 mol-' 
~ 

ri ti Experimental P = 0 Q =  1 Q = 2  

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
6 
6 
8 

2 
3 
4 
6 
8 

10 
3 
4 
6 
8 

10 
4 
6 
8 

10 
6 
8 

10 
8 

10 
10 

0.008 
0.050 
0.074 
0.116 
0.156 
0.178 
0.008 
0.012 
0.036 
0.060 
0.088 

-0.002 
0.01 9 
0.05 1 
0.089 
0.011 
0.041 
0.078 
0.010 
0.037 
0.007 

0.026 
0.066 
0.101 
0.156 
0.195 
0.223 
0.009 
0.026 
0.060 
0.088 
0.109 
0.004 
0.023 
0.042 
0.059 
0.007 
0.020 
0.032 
0.003 
0.009 
0.002 

- 

0.014 
0.035 
0.070 
0.095 
0.112 
0.005 
0.023 
0.040 
0.053 
0.007 
0.018 
0.027 
0.003 
0.007 
0.001 

- 
0.011 
0.043 
0.066 
0.082 
0.0 11 
0.025 
0.037 
0.003 
0.009 
0.001 

a Ref. 3 
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90 W. BROWSTOW AND B. C.-Y. LU 

same values that served to describe the volumes of pure components, we have 
calculated the excess volumes of mixing VE of binary equimolar mixtures. The 
results are listed in Table 3. The experimental data are those given by Benson 
and Pflug3 The agreement is reasonable even for mixtures containing methanol. 
A strict comparison of deviations would not be meaningful, in review of an 
approximate character of the computational procedures; moreover, different sets 
of mixtures are described by formulas for different Q. For larger VE values, 
however, such as for propanol + decanol, slight improvement is observed along 
with increasing Q. In general, for molar volumes we seem to be able to achieve 
the stated objectives: the association of alcohols notwithstanding, it is possible 
to predict the properties of mixtures in terms of the quantities characterizing 
pure components. Three parameters, obstainable essentially from values for 
3 substances, if measured accurately, serve to describe both the volumes of pure 
liquids and of 21 liquid mixtures. 

Isobaric expansivities 

The results of the calculations performed also for 298.15K using Eqs. (8-10) are 

TABLE 4 

Isobaric expansivities at 298.15K 

103 K-I 
r Experiment a1 Q = O  

3 

1.202b 
1.18Sa 

1.088b 
1 .083a 

0.994b 
0.981a 

1.217 

1.068 

0.984 

4 0.937a 0.929 

5 - 0.891 

6 0.852a 0.863 

7 - 0.841 

8 0.81 8a 0.824 

9 - 0.810 

10 0.804a 0.798 

a Ref. 3 

b Obtained from density expansions p (T) given 
in International Critical Tables, Vol. 3 .  
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SINGLE AND BINARY N- ALCOHOLS 91 

given in Table 4. The calculations were made for R = 0 only, in view of limited 
accuracy of the experimental data (sufficiently precise values are missing even 
for some pure components, and no excess functions of mixing aE were found). 
For consistency, values of crV were obtained using the computed V data for 
II = 0 as listed in Table 1. The respective parameters are (aV)' = 0.02234 cm3 
K7' mol-', (aV), = 0.10190 cm3 K-' mol-I, and (d), = 0.07505 cm3 K-' 
mol-'; the first of this values may be compared with (aV),, in (4). Using these 
three parameters together with these in Table 2, prediction of aE is, of course, 
possible. 

Isothermal compressibilities 

Analogous calculations were performed. The respective parameters are 
(KTV)] = 0.01689 J-' cm6 mol-I, (KTV)2 = 0.10684 J-' cm6 mol-', and 
( K T V ) ~  = 0.08313 J-' cm6 mol-'. The value of ( K T V ) ~  for methylene interac- 
tions may be compared with (KTV)~, , ,  = 0.0175 1 J-' cm6 mol-' for n-alkanes 
at 293. 15K,4 demonstrating again physical meaningfulness of our parameters. 
The results are shown in Table 5. The parameters in the Table'labelled "ex- 
perimental", have been calculated by Benson and Pflug3 using specific heats and 
sound velocities. In view of the accuracy of these data, the agreement with the 
values calculated through our procedure is entirely satisfactory. 

Adiabatic compressibilities 

These have been calculated by Bensod from sound velocity data. The respective 
values computed in the same way as for the quantities considered above, are 
given in Table 6. The parameters are (KsV)' = 0.01499 J-'cm6mol-', 

TABLE 5 

Isothermal compressibilities at 298.tSK 

10' KT,  J-'cm3 

r Expenmentala Q = 0 

1 1.247 1.276 
2 1.150 1.127 
3 1.012 1.018 
4 0.933 0.939 
5 - 0.881 
6 0.832 0.837 
7 - 0.802 
8 0.779 0.773 
9 - 0.750 

to  0.729 0.730 

a Ref. 3 
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92 W. BROWSTOW AND B.  C.-Y. LU 

( K , V ) ~  = 0.08844 J-'cm6mol-', and ( K ~ V ) ~  = 0.07138 J-'cm6mol-'. Obviously, 
the conclusions reached above are also applicable to  the case of adiabatic com- 
pressibilities. 

TABLE 6 

Adiabatic compressibilities at 298.15K 

103 K S ,  J-' cm3 

r Experimentala Q = 0 

1 1.038 1.056 
2 0.966 0.950 
3 0.862 0.866 
4 0.796 0.804 
5 - 0.785 
6 0.720 0.722 
7 - 0.693 
8 0.677 0.670 
9 - 0.65 1 

10 0.632 0.635 

a Ref. 8 

Heats of mixing 

As Eq. (1) applies to both Uc and V, at constant pressure it applies also to the 
sum He = Uc + PV. Making the usual assumption that the heat of mixing is 
determined by interactional contributions only, for a mixture of substances i + j 
one simply has HE = HC - xiH$ -xjH$, where the quantities without subscripts 
refer to mixture and double subscripts to pure components. The problem, thus, 
is that of finding He, H$ and H i ,  or $, U$ and U i .  To d o  this we can represent 
the configurational energy by 

E *=-  
V" 

where E is a constant, and the equation is clearly applicable also to pure sub- 
stances. Then, by thermodynamics, 

V @ = - -  ( T r - P )  
V" 

where y = OL/K T. Also 

n =  
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SINGLE AND BINARY N- ALCOHOLS 93 

where Hvap is the enthalpy of vaporization. The consequences of Eqs. (1 1) and 
(13), with the second virial coefficient of the vapour B being neglected, have 
been considered by a number of authors, most recently by Bagley and his 
collaborators.' Equations (12) and (13) together suggest a way for the experi- 
mental determination of U c .  In view of the fact, however, that for either com- 
ponents or mixtures, U c  is several orders of magnitude larger than UE or HE, 
very accurate values of all parameters featured in Eq. (13) are necessary for the 
prediction of heats of mixing. 

The values of y were available immediately from the data given above. The 
heats of vaporization of the lower alcohols have been measured by several au- 
thors, most recently and accurately by Polak and Benson." For the second 
virial coefficients we have utilized hn observation of Foz et QZ" that for the 
lower alcohols, plots of B/V vs. T/T ,-, where the subscript c refers to the 
liquid-vapour critical.point, gives nearly a single curve, or a family of curves close 
to one another. We have therefore determined from experimental data the coef- 
ficients in the expression -B/V, = d o  + d l  T/T, + d2(T/TC)'; for ethanol, we 
have taken the B data recomended by Dymond and Smith,'' while for propanol 
we have used the data of Foz et ~ l .  I '  and Cox;l3 the critical constants compiled 
by Zwolinski and his colleagues l4 were used. For ethanol, the constants do = 
361.5, d l  =-931.3 and d2=604.9 give B(298.15 K ) =  -4251 cm3mol-'. For 
propanol, the respective constants are 70.9, -165.4 and 100.0, which lead to 
B(298.15 K) =-2 170 cm3mol-'; using Cox's own equation, logarithmic in form, 
one obtains -2177 cm3mo1-'; such an agreement increases confidence in our 
B/Vc formula used for ethanol. 

The parameters so obtained were substituted into Eqs. (12) and (13). The 
resulting values are HC =-42903J mol-' for ethanol and -43974 J mol-' for 
propanol. Similar calculations for higher alcohols could not be performed 
for lack of the appropriate experimental data, in particular of the second 
virial coefficients at room temperature. We have therefore combined the 
values for ethanol and propanol with the excess heats of mixing and gen- 
erated on a computer sets of HC values for pure components for Q = 0. 
The parameters which reproduce the HC values given above for ethanol and 
propanol are Hy =-2599 J mol-', H$ =-84120 J mol-I, and Hf=-43289 
J mol-I. The calculated values of HE for equimolar binary mixtures, obtained 
using this set of parameters, are given in Table 7, along with the experimental 
data of Benson and P f l ~ g . ~  In view of difficulties involved in calculating HC 
values for pure components, there was little point in performing calculations for 
Q > 0. Inspection of Table 7 shows that with 3 interaction parameters it is possi- 
ble to describe 2 1 binary systems. Numerical differences between calculated and 
experimental values may be explained in terms of differences in force fields 
around, say, a methanol molecule (cf. the discussion above in section 3) and, 
say, a decanol molecule. 
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94 W. BROWSTOW AND B. C.-Y. LU 

TABLE 7 

Equimolar excess heats of mixing at  298.15K 

HE, J rno1-l 
~ 

Expenmentala C Corr. volumes Q = 0 ri 9 
1 2 4.5 23.5 45.7 
1 3 82.1 139.3 114.1 
1 4 142.4 204.4 176.4 
1 6 236.1 321.3 271.8 
I 8 337.6 432.9 339.0 
1 10 391.4 493.9 387.9 

2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
6 
6 
8 

3 
4 
6 
8 

10 
4 
6 
8 

10 
6 
8 

10 
8 

10 
10 

19.2 
48.1 

126.4 
217.5 
301 .O 

5.4 
61.5 

153.5 
252.1 

27.0 
103.8 
201.3 

26.0 
95.6 
22.4 

23.3 
33.5 

100.6 
165.9 
245.1 

5.3 
51.8 

142.1 
246.5 
31.9 

114.4 
215.5 

27.1 
103.9 
20.8 

16.3 
45.1 

104.3 
152.2 
189.7 

7.6 
40.0 
73.2 

101.7 
13.0 
34.8 
56.0 

5.4 
15.8 
2.8 

a Ref. 3 

Table 7 contains also values labelled “corresponding volumes” obtained from 
the relation H E  = aVE, where a is a constant. This is the simplest possible expres- 
sion, based on the principle of corresponding volumes proposed b e f ~ r e . ~  The 
value of a = 2770 J cm-3 was simply obtained as an arithmetic average for pairs 
with rj > ri 2 3. The usefulness of this principle for the present case may be 
judged easily from the Table. Clearly, using more terms in the H = H(V) expan- 
sion should improve further the agreement. 

5. SOME CONCLUDING REMARKS 

Apart from monatomic molecules and their mixtures, systems of alkanes are 
usually considered t o  be the simplest. Normal alkanes and their binary mixtures 
have been treated in the paper quoted b e f ~ r e ; ~  the degree of difficulty was quite 
evidently less than that for mixtures of alcohols. It was possible to predict 
functions Like excess compressibility within the limits of experimental accuracy. 
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The improvement caused by increasing II for n-alkanes was unmistakeable. 
In increasing degree of complexity, mixtures of alkanes with aromatic hydro- 

carbons are usually taken as the next class of systems. In this instance, difficul- 
ties are encountered, even if a description of a series of systems with a single set 
of quasi-lattice theory parameters was po~s ib le . ’~  

In the context of the studies just mentioned, the relative success of the 
present treatment is clearly, to a certain extent, due to the fact that no  “for- 
eign” molecules “disturbing” the alcohol medium are present in our systems. 
However, the application of the present approach to mixtures containing alco- 
hols together with other substances now appears feasible. While the number of 
characteristic parameters is in general due to increase, such an increase might be 
insignificant, just as it was possible in this investigation to reduce the number of 
F y y l ,  parameters from six to three. 
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